If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x=1300
We move all terms to the left:
x^2+x-(1300)=0
a = 1; b = 1; c = -1300;
Δ = b2-4ac
Δ = 12-4·1·(-1300)
Δ = 5201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5201}}{2*1}=\frac{-1-\sqrt{5201}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5201}}{2*1}=\frac{-1+\sqrt{5201}}{2} $
| r/4=-6 | | -15m+14-7m=-14-20m | | 7+5m=5m+7 | | 29-x=243 | | 9y=11/16 | | 2x+18=8x+6 | | 6/2=3x | | 272-87x=251-93x | | -6-15u-6=8-20u | | –40=–8(z–2) | | -5x(2x-6)=(x+11) | | (2x+1)=(3×-31) | | -4t=12-16t | | 4y-13=67 | | 5x+19x-4=6(4x+4) | | 1/3x(9+15)=-3x+5+7 | | 3x+4-6x=13 | | 3(-2x-4)=-36 | | 3x-12=-4x+23 | | -40+30y=22-y | | 69=k6+ 79 | | 17+13r=-19-r+12r | | 1/9y=9/7-1/2 | | (2x+1)=(3×-31 | | 4x=4/2 | | 3xx=17 | | 1/9x+4=3/10x-6 | | 8x2=4x+10 | | 29-a=-(1-4a) | | 8x-20=6x+22 | | -x-19=5+2x | | p+32=p |